
Fieldbus
NI-FBUSTM Communications
Manager Function
Reference Manual

NI-FBUS Communications Manager FRM

March 2002 Edition
Part Number 370516A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838,
China (ShenZhen) 0755 3904939, Czech Republic 02 2423 5774, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186,
India 91 80 535 5406, Israel 03 6393737, Italy 02 413091, Japan 03 5472 2970, Korea 02 3451 3400,
Malaysia 603 9596711, Mexico 001 800 010 0793, Netherlands 0348 433466, New Zealand 09 914 0488,
Norway 32 27 73 00, Poland 0 22 528 94 06, Portugal 351 210 311 210, Russia 095 238 7139,
Singapore 2265886, Slovenia 386 3 425 4200, South Africa 11 805 8197, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support and Professional Services appendix. To comment on
the documentation, send email to techpubs@ni.com.

© 2002 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
National Instruments™, NI™, NI-FBUS™, and ni.com™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Compliance

FCC/Canada Radio Frequency Interference Compliance*

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference. The FCC
places digital electronics into two classes. These classes are known as Class A (for use in industrial-commercial locations only)
or Class B (for use in residential or commercial locations). Depending on where it is operated, this product could be subject to
restrictions in the FCC rules. (In Canada, the Department of Communications (DOC), of Industry Canada, regulates wireless
interference in much the same way.)
Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless products. By
examining the product you purchased, you can determine the FCC Class and therefore which of the two FCC/DOC Warnings
apply in the following sections. (Some products may not be labeled at all for FCC; if so, the reader should then assume these are
Class A devices.)
FCC Class A products only display a simple warning statement of one paragraph in length regarding interference and undesired
operation. Most of our products are FCC Class A. The FCC rules have restrictions regarding the locations where FCC Class A
products can be operated.
FCC Class B products display either a FCC ID code, starting with the letters EXN,
or the FCC Class B compliance mark that appears as shown here on the right.
Consult the FCC Web site at http://www.fcc.gov for more information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions
in this manual and the CE Mark Declaration of Conformity**, may cause interference to radio and television reception.
Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department
of Communications (DOC).
Changes or modifications not expressly approved by National Instruments could void the user’s authority to operate the
equipment under the FCC Rules.

Class A
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC
Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated
in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct
the interference at his own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Class B
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the
FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can
be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of
the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

Canadian Department of Communications
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Compliance to EU Directives
Readers in the European Union (EU) must refer to the Manufacturer’s Declaration of Conformity (DoC) for information**
pertaining to the CE Mark compliance scheme. The Manufacturer includes a DoC for most every hardware product except for
those bought for OEMs, if also available from an original manufacturer that also markets in the EU, or where compliance is not
required as for electrically benign apparatus or cables.
To obtain the DoC for this product, click Declaration of Conformity at ni.com/hardref.nsf/. This Web site lists the DoCs
by product family. Select the appropriate product family, followed by your product, and a link to the DoC appears in Adobe
Acrobat format. Click the Acrobat icon to download or read the DoC.

* Certain exemptions may apply in the USA, see FCC Rules §15.103 Exempted devices, and §15.105(c). Also available in
sections of CFR 47.

** The CE Mark Declaration of Conformity will contain important supplementary information and instructions for the user or
installer.

Conventions

The following conventions are used in this manual:

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation vii NI-FBUS Communications Manager FRM

Contents

Chapter 1
Administrative Functions

Related Documentation..1-1
List of Administrative Functions ...1-1
nifClose ..1-2
nifDownloadDomain ...1-3
nifGetBlockList ...1-4
nifGetDeviceList..1-6
nifGetInterfaceList...1-8
nifGetVFDList ...1-10
nifOpenBlock...1-12
nifOpenLink...1-14
nifOpenPhysicalDevice ...1-16
nifOpenSession ..1-18
nifOpenVfd ..1-19

Chapter 2
Core Fieldbus Functions

List of Core Functions ...2-1
nifFreeObjectAttributes ...2-2
nifFreeObjectType ...2-3
nifGetObjectAttributes...2-4
nifGetObjectName ...2-7
nifGetObjectSize..2-10
nifGetObjectType ..2-12
nifReadObject ..2-18
nifReadObjectList ..2-21
nifWriteObject ...2-24
Using Interface Macros..2-27

Chapter 3
Alert and Trend Functions

nifAcknowledgeAlarm...3-2
nifWaitAlert ...3-4
nifWaitTrend..3-6

Contents

NI-FBUS Communications Manager FRM viii ni.com

Appendix A
Technical Support and Professional Services

Glossary

Index

Tables
Table 1-1. List of Administrative Functions .. 1-1

Table 2-1. List of Core Functions .. 2-1
Table 2-2. Object Codes for the nifObjTypeList_t Data Structure.................. 2-14
Table 2-3. Object Codes for the nifObjTypeList_t Data Structure.................. 2-16
Table 2-4. Core Function Macros... 2-27

Table 3-1. Alert Functions.. 3-1
Table 3-2. Trend Function.. 3-1

© National Instruments Corporation 1-1 NI-FBUS Communications Manager FRM

1
Administrative Functions

For details on how NI-FBUS functions are classified and how to use them, refer to the
NI-FBUS Communications Manager User Manual.

Related Documentation
• Function Block Application Process, Part 1

• Function Block Application Process, Part 2

• Device Description Services Specification, Fieldbus Foundation

• Fieldbus Message Specification, Fieldbus Foundation

List of Administrative Functions
Table 1-1. List of Administrative Functions

Function Purpose

nifClose Close an open descriptor

nifDownloadDomain Download data to the virtual field device (VFD) domain

nifGetBlockList Return a list of information for all blocks of the specified type
present in the VFD

nifGetDeviceList Return the list of information for all active devices on the network

nifGetInterfaceList Read the list of interface names from the NI-FBUS
Communications Manager configuration

nifGetVFDList Gather VFD information on a specified physical device

nifOpenBlock Return a descriptor representing a block

nifOpenLink Return a descriptor representing a Fieldbus link

nifOpenPhysicalDevice Return a descriptor representing a physical device

nifOpenSession Return a descriptor for an NI-FBUS session

nifOpenVfd Return a descriptor representing a VFD

Chapter 1 Administrative Functions — nifClose

NI-FBUS Communications Manager FRM 1-2 ni.com

nifClose

Purpose
Close an open descriptor.

Format
nifError_t nifClose(nifDesc_t ud)

Input
ud The descriptor from an nifOpen call.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

Description
nifClose closes the specified descriptor. The descriptor is invalid after it is closed. Be sure
your application closes all the descriptors it opens. Your application should always close a
descriptor if it no longer needs the descriptor.

If you close a descriptor with calls pending on it, the calls complete within the usual time with
an error code indicating that you closed the descriptor prematurely. If you make more
synchronous wait calls that wait on the closing descriptor, such as nifWaitTrend,
nifWaitAlert, and nifGetDeviceList, the NI-FBUS Communications Manager aborts
these functions and returns an error code indicating that you closed the descriptor. Because
calls that wait on a closed descriptor return an error message, you should have a separate
descriptor just for these synchronous wait calls.

Note A session is a connection between your application and an NI-FBUS entity. If you
close a session, you close the communication channel between your application and the
NI-FBUS entity associated with the session. Make sure you close all descriptors opened
under this session before closing a session descriptor.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor is invalid.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions — nifDownloadDomain

© National Instruments Corporation 1-3 NI-FBUS Communications Manager FRM

nifDownloadDomain

Purpose
Download data from fileName to the specified VFD domain according to the index value.

Format
nifError_t nifDownloadDomain (nifDesc_t ud, uint16 index, char

*fileName)

Input
ud The descriptor of the VFD you are accessing by index.

index The absolute VFD index value of the domain you specified to
download the data.

fileName The name of the file where the download data is stored.

Context
VFD, physical device, link, session.

Description
nifDownloadDomain is used to download the data or parameter values to the specified VFD
domain. The domain is specified by index.

To determine the index value you need, consult the documentation of the device to which you
are trying to download the domain. If the device supports the Domain Download feature, the
index for download should be specified in the documentation.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you specified is not valid.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communication Manager, under which the
descriptor was opened, has been lost or closed.

E_RESOURCE The NI-FBUS Communications Manager is unable
to allocate some system resource; this is usually a
memory problem.

E_DEVICE_CHANGED The device you specified is changed.

E_VFD_CHANGED The VFD you specified is changed.

Chapter 1 Administrative Functions — nifGetBlockList

NI-FBUS Communications Manager FRM 1-4 ni.com

nifGetBlockList

Purpose
Returns a list of information for all blocks of the specified type present in the VFD.

Format
nifError_t nifGetBlockList(nifDesc_t ud, uint8 whichTypes,

nifBlockInfo_t *info, uint16 *numBlocks)

Input
ud The descriptor of a VFD.

whichTypes Specifies what types of blocks to return (function, transducer,
or physical).

numBlocks The number of buffers allocated in the info list.

Output
info The list of information associated with each block.

numBlocks The number of blocks actually in the VFD.

Context
VFD.

Description
nifGetBlockList returns information about all the blocks in the specified VFD. A block

can be a resource block, transducer block, or function block residing within a VFD. Only
blocks of the types specified by whichTypes are returned.

To determine how many list items are to be returned in the call, call the function twice.
The first time you call the function, set the numBlocks parameter to 0. The function will
return an error stating that there were not enough buffers configured, and it will return a new
number for numBlocks. Use this new numBlocks parameter to allocate memory for the data.
When you call the function the second time, use this new parameter. By doing so, you will
allocate only as much memory as necessary.

nifBlockInfo_t is defined as follows:

typedef struct {

char fbTag[TAG_SIZE + 1];

uint16 startIndex;

uint32 ddName;

uint32 ddItem;

Chapter 1 Administrative Functions — nifGetBlockList

© National Instruments Corporation 1-5 NI-FBUS Communications Manager FRM

uint16 ddRev;

uint16 profile;

uint16 profileRev;

uint32 executionTime;

uint32 periodExecution;

uint16 numParams;

uint16 nextFb;

uint16 startViewIndex;

uint8 numView3;

uint8 numView4;

uint16 ordNum;

uint8 blockType;

} nifBlockInfo_t;

The blockType field in nifBlockInfo_t can be FUNCTION_BLOCK,
TRANSDUCER_BLOCK, or RESOURCE_BLOCK.

The whichTypes parameter must be a bit combination of FUNCTION_BLOCK,
TRANSDUCER_BLOCK, and RESOURCE_BLOCK.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor was invalid or of the wrong type.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_BUF_TOO_SMALL The buffer does not contain enough entries to hold all
the information for the blocks. If you receive this
error, buffer entries that you allocated do not contain
valid block information when the call returns.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifGetBlockList completed.

E_BAD_ARGUMENT The whichtypes value is something other than
FUNCTION_BLOCK, TRANSDUCER_BLOCK, or
RESOURCE_BLOCK.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions — nifGetDeviceList

NI-FBUS Communications Manager FRM 1-6 ni.com

nifGetDeviceList

Purpose
Return the list of information for all active devices on the network.

Format
nifError_t nifGetDeviceList(nifDesc_t link,

nifDeviceInfo_t *devInfo, uint16 *numDevices,

uint16 *revision)

Input
link The link descriptor to return information for.

numDevices The number of allocated list entries.

revision The revision number from the last nifGetDeviceList call,
or zero (see the Description section for usage).

Output
devInfo The list of device information.

numDevices The number of devices present in the link.

revision Current revision number of the live list that the NI-FBUS
Communications Manager reads from the Fieldbus interface to
the specified link.

Context
Link.

Description
nifGetDeviceList returns a list of information describing each device on the link. A link
is a group of Fieldbus devices connected across a single wire pair with no intervening bridges.
Before nifGetDeviceList returns the list of information, nifGetDeviceList waits until
the revision argument passed in differs from the live list revision number the Fieldbus
interface keeps to the specified link. The revision numbers the Fieldbus interface keeps start
at one, so if you pass in a zero for revision, you can force nifGetDeviceList to
immediately return the current device list. To use nifGetDeviceList most effectively, in
subsequent calls to it, you should pass in the revision parameter output from the previous
call to nifGetDeviceList. Using the revision parameter output from the previous call
forces nifGetDeviceList to wait until the device list has actually changed before returning
the list of information.

Chapter 1 Administrative Functions — nifGetDeviceList

© National Instruments Corporation 1-7 NI-FBUS Communications Manager FRM

If a device on the bus is unresponsive, its entry in the device information list has the tag
and device ID unknown device, but its address field is correct. Also, the flag bit
NIF_DEV_NO_RESPONSE is set.

The device list includes devices in the fixed, temporary, and visitor address ranges.

If there are too few input buffers, nifGetDeviceList returns an error code, but the
numDevices parameter is set to the total number of devices available. In this case, the buffers
you pass in do not contain valid data, but the revision number is set to the correct value. If a
device is an interface device, then the flag bit NIF_DEV_INTERFACE is set. You can abort a
pending nifGetDeviceList call by closing the link descriptor on which the call was made.

To determine how many list items are to be returned in the call, call the function twice.
The first time you call the function, set the numDevices parameter to 0. The function will
return an error stating that there were not enough buffers configured, and it will return a new
number for numDevices. Use this new numDevices parameter to allocate memory for the
data. When you call the function the second time, use this new parameter. By doing so, you
will allocate only as much memory as necessary.

nifDeviceInfo_t is defined as follows:

typedef struct {

char deviceID[DEV_ID_SIZE + 1];

char pdTag[TAG_SIZE + 1];

uint8 nodeAddress;

uint32 flags;

} nifDeviceInfo_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The link descriptor is invalid.

E_BUF_TOO_SMALL There are not enough buffers allocated. If you receive
this error, your input buffers do not contain valid
data.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifGetDeviceList completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions — nifGetInterfaceList

NI-FBUS Communications Manager FRM 1-8 ni.com

nifGetInterfaceList

Purpose
Read the list of interface names from the NI-FBUS Communications Manager configuration.

Format
nifError_t nifGetInterfaceList(nifDesc_t ud,

int16 *numIntf, nifInterfaceInfo_t *info)

Input
ud A valid session descriptor.

numIntf The number of buffers for interface information reserved in info.

Output
numIntf The actual number of names returned.

info An array of structures containing the interface name and device ID
for each interface.

Context
Not applicable.

Description
nifGetInterfaceList returns the interface name and device ID of each Fieldbus interface.
The numIntf parameter is an IN/OUT parameter. On input, it must contain the number of
buffers that info allocates and points to, and on output it contains the total number of interface
information entries available. If not enough buffers were allocated, or if the info buffer is
NULL, the NI-FBUS Communications Manager returns an error and does not copy any data
to the buffers. In this case, the numIntf parameter is still valid.

To determine how many list items are to be returned in the call, call the function twice. The
first time you call the function, set the numIntf parameter to 0. The function will return an
error stating that there were not enough buffers configured, and it will return a new number
for numIntf. Use this new numIntf parameter to allocate memory for the data. When you
call the function the second time, use this new parameter. By doing so, you will allocate only
as much memory as necessary.

Chapter 1 Administrative Functions — nifGetInterfaceList

© National Instruments Corporation 1-9 NI-FBUS Communications Manager FRM

The nifInterfaceInfo_t structure is defined as follows:

typedef struct nifInterfaceInfo_t{

char interfaceName[NIF_NAME_LEN];

char deviceID[DEV_ID_SIZE +1];

} nifInterfaceInfo_t;

Note nifGetInterfaceList is an internal function for the NI-FBUS Communications
Manager and does not cause Fieldbus activity.

Return Values
E_OK The call was successful.

E_BUF_TOO_SMALL The buffer does not contain enough entries to hold all
the interface information.

E_CONFIG_ERROR Some configuration information, such as registry
information or network configuration information,
is incorrect.

E_NOT_FOUND Some interfaces are missing in the bus.

Chapter 1 Administrative Functions — nifGetVFDList

NI-FBUS Communications Manager FRM 1-10 ni.com

nifGetVFDList

Purpose
Gather VFD information on a specified physical device.

Format
nifError_t nifGetVFDList(nifDesc_t ud, nifVFDInfo_t *info,

uint16 *numBuffers)

Input
ud The descriptor of the physical device to get the VFD list for.

numBuffers The number of buffers allocated in the info list.

Output
numBuffers The number of VFDs actually in the device.

info The VFD information.

Context
Physical device.

Description
nifGetVFDList gathers function block application VFD information from the specified
physical device.

If there are too few input buffers, or if the input buffer pointer is NULL, an error code is
returned, but the numBuffers parameter is set to the total number of VFDs in the device.
In this case, no buffers contain valid data on output.

To determine how many list items are to be returned in the call, call the function twice.
The first time you call the function, set the numBuffers parameter to 0. The function will
return an error stating that there were not enough buffers configured, and it will return a new
number for numBuffers. Use this new numBuffers parameter to allocate memory for the
data. When you call the function the second time, use this new parameter. By doing so, you
will allocate only as much memory as necessary.

The info parameter has the following format:

typedef struct {

char vfdTag[TAG_SIZE + 1];

char vendor[TAG_SIZE +1];

char model[TAG_SIZE +1];

char revision[TAG_SIZE +1];

Chapter 1 Administrative Functions — nifGetVFDList

© National Instruments Corporation 1-11 NI-FBUS Communications Manager FRM

int16 ODVersion;

uint16 numTransducerBlocks;

uint16 numFunctionBlocks;

uint16 numActionObjects;

uint16 numLinkObjects;

uint16 numAlertObjects;

uint16 numTrendObjects;

uint16 numDomainObjects;

uint16 totalObjects;

uint32 flags;

} nifVFDInfo_t;

Return Values
E_OK The call was successful.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_INVALID_DESCRIPTOR The input descriptor does not correspond to a
physical device.

E_BUF_TOO_SMALL There were not enough allocated buffers. Your
specified input buffers do not contain valid data.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because
it is at a default address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifGetVFDList completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

Chapter 1 Administrative Functions — nifOpenBlock

NI-FBUS Communications Manager FRM 1-12 ni.com

nifOpenBlock

Purpose
Return a descriptor representing a block.

Format
nifError_t nifOpenBlock (nifDesc_t ud, char *blockTag,

nifDesc_t *out_ud)

nifError_t nifOpenBlock (nifDesc_t ud, NIFB_ORDINAL(n),

nifDesc_t *out_ud)

Input
ud A valid session, link, physical device, or VFD descriptor.

blockTag The tag of the block. To access a block by ordinal number within
a VFD, use the NIFB_ORDINAL macro in the nifbus.h header
file. You can only access a block by ordinal number for VFD
descriptors.

Output
out_ud A descriptor for the block you request.

Context
VFD, physical device, link, session.

Description
nifOpenBlock returns a descriptor for the block you specify. You must pass a valid session,
link, physical device, or VFD descriptor to this function.

There are two ways to specify the block: by tag, and by ordinal number. To open the block
by its tag, you must set blockTag to the current tag of the block. The NI-FBUS
Communications Manager returns an error if it finds more than one block with the same tag.
You can obtain the list of block tags within a specified VFD with a call to
nifGetBlockList.

To open the block by its ordinal number, use the NIFB_ORDINAL macro. This macro is only
valid if ud is a VFD descriptor. The first block in a VFD has the ordinal number zero. Notice
that the first block in a VFD is always the resource block.

Chapter 1 Administrative Functions — nifOpenBlock

© National Instruments Corporation 1-13 NI-FBUS Communications Manager FRM

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

E_MULTIPLE There are identical block tags.

E_ORDINAL_NUM_OUT_OF_RANGE The ordinal number is out of the device’s range.

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager communicated with
the device.

E_NOT_FOUND There is no such block in the device or VFD with the
specified tag.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifOpenBlock completed.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

Chapter 1 Administrative Functions — nifOpenLink

NI-FBUS Communications Manager FRM 1-14 ni.com

nifOpenLink

Purpose
Return a descriptor representing a Fieldbus link.

Format
nifError_t nifOpenLink (nifDesc_t session, uint8 interfaceOrDevID,

char *name, uint16 linkID, nifDesc_t *out_ud)

Input
session A valid session descriptor on which to open the link.

interfaceOrDevID How to specify the link: zero if by interface name, one if by local
device ID.

name The interface name or local device ID.

linkID The link ID.

Output
out_ud A descriptor for the link you request.

Context
Session.

Description
nifOpenLink returns a descriptor for the link you specify. You must pass a valid session
descriptor to this function.

There are two ways you can specify the link. If the interfaceOrDevID parameter is zero,
then name specifies the name of the interface the link is connected to. The list of valid
interface names is contained in a configuration source which the NI-FBUS Communications
Manager has access to, and can be obtained by a call to nifGetInterfaceList.
If interfaceOrDevID is one, then the name specifies the device ID of an interface device
to which the NI-FBUS Communications Manager is attached.

In both cases, linkID is the Fieldbus link ID number for the specified link. For single-link
Fieldbus networks, you can set linkID to zero.

Chapter 1 Administrative Functions — nifOpenLink

© National Instruments Corporation 1-15 NI-FBUS Communications Manager FRM

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

E_CONFIG_ERROR Some configuration information, such as registry
information or network configuration information,
is incorrect.

E_NOT_FOUND The interface name, device ID, or link ID you
specified is not found.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_BAD_ARGUMENT The interfaceOrDevID value is not valid.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifOpenLink completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions — nifOpenPhysicalDevice

NI-FBUS Communications Manager FRM 1-16 ni.com

nifOpenPhysicalDevice

Purpose
Return a descriptor representing a physical device.

Format
nifError_t nifOpenPhysicalDevice (nifDesc_t ud, uint8 tagOrDevID,

char *name, nifDesc_t *out_ud)

Input
ud A valid session or link descriptor on which to open the device.

tagOrDevID How to specify the device: zero if by physical device tag, one if by
device ID.

name The tag or device ID.

Output
out_ud A descriptor for the device you request

Context
Link, session.

Description
nifOpenPhysicalDevice returns a descriptor for the physical device you specify. You
must pass a valid session or link descriptor to this function. If you pass a link descriptor,
the NI-FBUS Communications Manager searches only that link for the specified device.

There are two ways you can specify the device. If the tagOrDevID parameter is zero, then
the name specifies the tag of the physical device. If tagOrDevID is one, then name is the
device ID of the device you specify. You can obtain the list of physical device tags and device
IDs of devices on the network with a call to nifGetDeviceList.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

E_BAD_ARGUMENT The tagOrDevID value is not valid.

E_NOT_FOUND No attached physical device has the specified
device ID or physical device tag.

E_MULTIPLE There is more than one device with the same tag
or device ID on the same Fieldbus network.

Chapter 1 Administrative Functions — nifOpenPhysicalDevice

© National Instruments Corporation 1-17 NI-FBUS Communications Manager FRM

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager communicated with
the device.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifOpenPhysicalDevice completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions — nifOpenSession

NI-FBUS Communications Manager FRM 1-18 ni.com

nifOpenSession

Purpose
Return a descriptor for an NI-FBUS Communications Manager session.

Format
nifError_t nifOpenSession (void *reserved, nifDesc_t *out_ud)

Input
reserved Reserved for future use; you must set this value to NULL.

Output
out_ud A descriptor for the NI-FBUS Communications Manager

communications entity you request.

Context
Not applicable.

Description
nifOpenSession returns a descriptor for the NI-FBUS Communications Manager session.
When you open a session, the NI-FBUS Communications Manager establishes a
communication channel between your application and the NI-FBUS entity. All subsequent
descriptors you open are associated with this session, and all the NI-FBUS calls on these
descriptors communicate with the NI-FBUS entity through the communication channel
established during the nifOpenSession call.

The reserved argument is reserved for future use; you must set reserved to NULL.

Return Values
E_OK The call was successful.

E_SERVER_NOT_RESPONDING Either the NI-FBUS Communications Manager
server has not been started, or the server, in its current
state, cannot respond to the request.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage, or a failure of
file access functions.

Chapter 1 Administrative Functions — nifOpenVfd

© National Instruments Corporation 1-19 NI-FBUS Communications Manager FRM

nifOpenVfd

Purpose
Return a descriptor representing a Virtual Field Device (VFD).

Format
nifError_t nifOpenVfd (nifDesc_t ud, char *vfdTag,

nifDesc_t *out_ud)

nifError_t nifOpenVfd (nifDesc_t ud, NIFB_ORDINAL(n),

nifDesc_t *out_ud)

Input
ud A valid physical device descriptor.

vfdTag The tag of the VFD. To access by ordinal number within a
physical device, use the ORDINAL macro in the nifbus.h
header file.

Output
out_ud A descriptor for the VFD you request.

Context
Physical device.

Description
nifOpenVfd returns a descriptor for the VFD you specify. More than one VFD can reside
within a physical device. You must pass a valid physical device descriptor to this function.

There are two ways to specify the VFD: by tag and by ordinal number. To open the VFD by
its tag, you must set the vfdTag parameter to the current tag of the VFD. The NI-FBUS
Communications Manager returns an error if it finds more than one VFD with the same tag.
You can obtain the list of VFD tags within a specified physical device with a call to
nifGetVFDList.

To open the VFD by its ordinal number, use the NIFB_ORDINALmacro. The first VFD of your
application in a physical device has the ordinal number zero. Notice that the Management
VFDs are not included in the ordinal numbering scheme.

Chapter 1 Administrative Functions — nifOpenVfd

NI-FBUS Communications Manager FRM 1-20 ni.com

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

E_MULTIPLE There are identical VFD tags.

E_ORDINAL_NUM_OUT_OF_RANGE The ordinal number is out of the device’s range.

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager communicated with
the device.

E_NOT_FOUND No VFD in the device has the specified VFD tag.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because it
is at a default address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifOpenVfd completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

© National Instruments Corporation 2-1 NI-FBUS Communications Manager FRM

2
Core Fieldbus Functions

You can use the NI-FBUS core functions to access Fieldbus block parameters using any type
of descriptor. Because there are several ways to identify the Fieldbus block parameters, the
NI-FBUS core functions accept special interface macros for the name argument, as well as
the standard TAG.PARAM identifier format. Refer to the Using Interface Macros section for
tips on using the interface macros.

List of Core Functions
Table 2-1. List of Core Functions

Function Purpose

nifFreeObjectAttributes Free an nifAttributes_t structure allocated during a
previous call to nifGetObjectAttributes.

nifFreeObjectType Free an nifObjTypeLinst_t structure allocated during a
previous call to nifGetObjectType.

nifGetObjectAttributes Read a single set of object attributes from the Device Description
(DD).

nifGetObjectName Returns the Object Dictionary symbol name of the specified
object.

nifGetObjectSize Return the size in bytes of an object’s value.

nifGetObjectType Returns the Object Dictionary type of the specified object.

nifReadObject Read an object’s value from a device.

nifReadObjectList Read the values of several objects from a device or several
devices.

nifWriteObject Write a parameter value to a device.

Chapter 2 Core Fieldbus Functions — nifFreeObjectAttributes

NI-FBUS Communications Manager FRM 2-2 ni.com

nifFreeObjectAttributes

Purpose
Free an nifAttributes_t structure allocated during a previous call to
nifGetObjectAttributes.

Format
nifError_t nifFreeObjectAttributes(nifAttributes_t *attr)

Input
attr Object attribute values your application reads using

nifGetObjectAttributes.

Output
Not applicable.

Context
Session, block, VFD, physical device, link.

Description
nifFreeObjectAttributes frees up the memory associated with the nifAttributes_t
structure specified by attr.attr must have been filled in by a successful call to
nifGetObjectAttributes. Once this function has been called, the contents of attr
are no longer valid.

If your application does not call this function after calling nifGetObjectAttributes,
your application will not free up memory properly.

Return Values
E_OK The call was successful.

E_BAD_ARGUMENT attr was not a valid nifAttributes_t structure.

Chapter 2 Core Fieldbus Functions — nifFreeObjectType

© National Instruments Corporation 2-3 NI-FBUS Communications Manager FRM

nifFreeObjectType

Purpose
Frees the nifObjTypeList_t structure allocated during a previous call to
nifGetObjectType.

Format
nifError_t nifFreeObjectType(nifObjTypeList_t *typeData)

Input
typeData Object Type values to be freed. These values were previously read

with the nifGetObjectType function call.

Output
Not applicable.

Context
Session, block, VFD, physical device, link.

Description
nifFreeObjectType frees up the memory associated with the nifObjTypeList_t
structure specified by typeData. typeData must have been filled in by a successful call to
nifGetObjectType. Once this function has been called, the contents of typeData are no
longer valid.

If your application does not call this function after calling nifGetObjectType, your
application will not free up memory properly.

Refer to nifGetObjectType to get more details about the nifObjTypeList_t structure.

Return Values
E_OK The call was successful.

E_BAD_ARGUMENT typeData was not a valid nifObjTypeList_t

structure.

Chapter 2 Core Fieldbus Functions — nifGetObjectAttributes

NI-FBUS Communications Manager FRM 2-4 ni.com

nifGetObjectAttributes

Purpose
Read a single set of object attributes from the Device Description (DD).

Format
nifError_t nifGetObjectAttributes(nifDesc_t ud, char *name,

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_INDEX(uint16 idx), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_ITEM(uint32 item), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,

uint16 subidx), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,

uint16 subidx), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint16 subidx),

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,

uint16 subidx), nifAttributes_t *attr)

Chapter 2 Core Fieldbus Functions — nifGetObjectAttributes

© National Instruments Corporation 2-5 NI-FBUS Communications Manager FRM

Input
ud The descriptor (of any type if by name; VFD or block if by index).

name Name of the object you need the device description attributes of,
in BLOCKTAG.PARAM form. To specify a structure element by
name, specify the name in BLOCKTAG.STRUCT.ELEMENT format.
Refer to Table 2-4 for an explanation of how to use macros to
specify the object.

Output
attr Object attribute values read from the DDOD (Device Description

Object Dictionary). The type nifAttributes_t consists of a
data structure including a type code which selects from a list of
structures, one for each type of object. Other information,
including whether individual attributes were successfully
evaluated and whether individual attributes are dynamic (meaning
they could change) is also provided. The structure is too long to be
included in this manual, so you can find it in the NI-FBUS
Communications Manager header files.

Context
Session, block, VFD, physical device, link.

Description
The NI-FBUS Communications Manager reads the device description object attributes
identified in the call from the DDOD associated with ud and returned in attr. Notice that the
object attributes describe certain characteristics of the object, but do not contain the object’s
value. The device description object attributes also differ in content from the FMS Object
Description of the object.

For block, VFD, physical device, or link descriptors, the object name may refer to a variable
or a variable list. You would normally use nifGetObjectAttributes to read the type
description of a certain data type.

Refer to Table 2-4 for an explanation of how to use macros to specify the object.

For more detailed information concerning the nifAttributes_t structure, refer to
Chapter 3, Using ddi_get_item, in the Fieldbus Foundation Device Description Services
User Guide.

Note After a successful call to nifGetObjectAttributes, your application must call
nifFreeObjectAttributes when it is done using the attr structure. Your application
will not free up memory correctly if it does not perform this operation.

Chapter 2 Core Fieldbus Functions — nifGetObjectAttributes

NI-FBUS Communications Manager FRM 2-6 ni.com

Return Values
E_OK The call was successful.

E_CONFIG_ERROR Some configuration information, such as registry
information or network configuration information,
is incorrect.

E_INVALID_DESCRIPTOR The device descriptor does not correspond to a VFD
or block.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because it
is at a default address.

E_NOT_FOUND The referred object does not exist, or it does not have
object attributes.

E_MULTIPLE The NI-FBUS Communications Manager found
more than one identical tag; the function failed.

E_ORDINAL_NUM_OUT_OF_RANGE The ordinal number is out of the device’s range.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifGetObjectAttributes completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions — nifGetObjectName

© National Instruments Corporation 2-7 NI-FBUS Communications Manager FRM

nifGetObjectName

Purpose
Returns the Object Dictionary symbol name of the specified object.

Format
nifError_t nifGetObjectName(nifDesc_t ud, char *inName, char

*outName)

nifError_t nifGetObjectName(nifDesc_t ud, NIFB_INDEX(uint16 idx),

char *outName)

nifError_t nifGetObjectName(nifDesc_t ud, NIFB_INDEX_SUBINDEX(uint16

idx, uint16 subidx), char *outName)

nifError_t nifGetObjectName(nifDesc_t ud, NIFB_ITEM(uint32 item),

char *outName)

nifError_t nifGetObjectName(nifDesc_t ud, NIFB_ITEM_SUBINDEX(uint32

item, uint16 subidx), char *outName)

nifError_t nifGetObjectName(nifDesc_t ud, NIFB_BLOCK_INDEX(char

*blocktag, uint32 idx), char *outName)

nifError_t nifGetObjectName(nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag,

uint16 idx, uint16 subidx), char *outName)

nifError_t nifGetObjectName(nifDesc_t ud, NIFB_NAME_SUBINDEX(char

*name, uint16 subidx), char *outName)

nifError_t nifGetObjectName(nifDesc_t ud, NIFB_BLOCK_NAME_SUBINDEX

(char *blocktag, char *name, uint16 subidx),

char *outName)

Input
ud The descriptor of the session, link, physical device, VFD or block

if you are accessing by name. If you are accessing by index, ud
must be a VFD or block.

inName The name of the parameter you want to read the OD symbol name
in BLOCKTAG.PARAM form. Refer to Table 2-4 for an explanation
of how to use macros to specify the parameter. To specify a named
structure element, supply name in BLOCKTAG.STRUCT.ELEMENT
format.

Chapter 2 Core Fieldbus Functions — nifGetObjectName

NI-FBUS Communications Manager FRM 2-8 ni.com

Output
outName The Object symbol name read from the Object Dictionary in

the device.

Context
Session, block, VFD, DDOD, physical device, link.

Description
nifGetObjectName is used to read the Object Dictionary symbol names of objects such as
block, VFD, MIB objects, or communication objects from devices.

• If ud is the descriptor of a link, then inName must be in BLOCKTAG.PARAM_NAME

format.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if identical BLOCKTAG.PARAM_NAME tags are
found on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, and you use the
NIFB_INDEX macro, the index specified is the index of the object in the VFD.

• If ud is the descriptor of a function block, name must be in PARAM_NAME format.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter. Index zero
retrieves the object dictionary symbol name of the block itself.

• In all cases, you can expand PARAM_NAME to STRUCT.ELEMENT format to represent a
named element of a named structure.

Refer to Table 2-4 for an explanation of how to use macros to specify the parameter.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you specified is not valid.

E_NOT_FOUND The NI-FBUS Communication Manager could not
find the specified object.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communication Manager could not
find the symbol file.

E_BAD_ARGUMENT The object specified by index was that of a simple
data type, which must already be known to you.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communication Manager, under which the
descriptor was opened, has been lost or closed.

Chapter 2 Core Fieldbus Functions — nifGetObjectName

© National Instruments Corporation 2-9 NI-FBUS Communications Manager FRM

E_DEVICE_CHANGED The device you specified is changed.

E_VFD_CHANGED The VFD you specified is changed.

E_COMM_ERROR An error occurred when the NI-FBUS
Communication Manager tried to communicate with
the device.

E_RESOURCE The NI-FBUS Communications Manager is unable
to allocate some system resource; this is usually a
memory problem.

E_OBSOLETE_BLOCK The block you specified is no longer valid.

Chapter 2 Core Fieldbus Functions — nifGetObjectSize

NI-FBUS Communications Manager FRM 2-10 ni.com

nifGetObjectSize

Purpose
Return the size (in bytes) of an object’s value.

Format
nifError_t nifGetObjectSize(nifDesc_t ud, char *name,

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud, NIFB_INDEX(uint16 idx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_ITEM(uint32 item), int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,

uint16 subidx), int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,

uint16 subidx), int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint16 subidx),

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,

uint16 subidx), int16 *size_in_bytes)

Chapter 2 Core Fieldbus Functions — nifGetObjectSize

© National Instruments Corporation 2-11 NI-FBUS Communications Manager FRM

Input
ud The descriptor of a block.

name Character string name of the object you need the size of, in
BLOCKTAG.PARAM form. To specify a structure element by name,
specify the name in BLOCKTAG.STRUCT.ELEMENT format. Refer
to Table 2-4 for an explanation of how to use macros to specify
the character string name.

Output
size_in_bytes The size of the object.

Context
Session, block, VFD, physical device, link.

Description
This function returns the size of the specified Object Value. You have to pass a buffer of the
returned size to nifReadObject to hold the value of the object.

Refer to Table 2-4 for an explanation of how to use macros to specify the character
string name.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The specified descriptor is invalid.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_NOT_FOUND The named object does not exist.

E_MULTIPLE Multiple identical tags were found; the function
failed.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifGetObjectSize completed.

E_ORDINAL_NUM_OUT_OF_RANGE The ordinal number is out of the device’s range.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions — nifGetObjectType

NI-FBUS Communications Manager FRM 2-12 ni.com

nifGetObjectType

Purpose
Returns the Object Dictionary type of the specified object.

Format
nifError_t nifGetObjectType(nifDesc_t ud, char *objName,

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_INDEX(uint16 idx), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_ITEM(uint32 item), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,

uint16 subidx), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,

uint16 subidx), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint16 subidx),

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,

uint16 subidx), nifObjTypeList_t *typeData)

Chapter 2 Core Fieldbus Functions — nifGetObjectType

© National Instruments Corporation 2-13 NI-FBUS Communications Manager FRM

Input
ud The descriptor of the session, link, physical device, VFD or block

if you are accessing by name. If you are accessing by index, ud
must be a VFD or block.

objName The name of the parameter you want to read the OD type of, in
BLOCKTAG.PARAM form. Refer to Table 2-4 for an explanation of
how to use macros to specify the parameter. To specify a named
structure element, supply name in BLOCKTAG.STRUCT.ELEMENT
format. To specify a type index returned by a previous call to
nifGetObjectType, use the NIFB_TYPE_INDEX macro.

Output
typeData Object Type value read from the object dictionary in the device.

The nifObjTypeList_t data structure is a record consisting of
an object type code, the number of elements, the blocktag to
which this object belongs (if applicable), and a pointer to a list of
elements of type nifObjElem_t. The nifObjElem_t type is a
structure which consists of two elements: the OD typeIndex of
the element, and the OD length of the element.

Context
Session, block, VFD, DDOD, physical device, link.

Description
nifGetObjectType is used to read the Object Dictionary type values of objects such as
block parameters, MIB objects, or communication parameters from devices.

• If ud is the descriptor of a link, then objName must be in BLOCKTAG.PARAM_NAME

format.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if identical BLOCKTAG.PARAM_NAME tags are
found on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, and you use the
NIFB_INDEX macro, the index specified is the index of the object in the VFD.

• If ud is the descriptor of a function block, name must be in PARAM_NAME format.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter. Index zero
retrieves the OD type of the block itself.

• In all cases, you can expand PARAM_NAME to STRUCT.ELEMENT format to represent a
named element of a named structure.

Chapter 2 Core Fieldbus Functions — nifGetObjectType

NI-FBUS Communications Manager FRM 2-14 ni.com

Refer to Table 2-4 for an explanation of how to use macros to specify the parameter.

The nifObjTypeList_t data structure is defined as follows:

typedef struct {

uint8 objectCode;

uint16 numElems;

char blockTag[TAG_SIZE + 1];

nifObjElem_t *allElems;

} nifObjTypeList_t;

The nifObjElem_t data type is defined as follows:

typedef struct {

uint16 objTypeIndex;

uint16 objSize;

} nifObjElem_t;

The objectCode returned in the data structure nifObjTypeList_t is as specified in the
FMS Specifications section in the Fieldbus Foundation Specifications document, and is listed
in Table 2-2 for your convenience.

For object codes ODT_STRUCTTYPE, ODT_SIMPLEVAR, ODT_ARRAY, and ODT_RECORD, the
list of elements in allElements contains the typeIndex and the size of each component
element. For example, the following fragment of pseudocode gets the type information for a
structured object and does something with the type information for each element:

nifObjTypeList_t typeInfo;

nifDesc_t aiBlock;

Table 2-2. Object Codes for the nifObjTypeList_t Data Structure

Object Object Code in fbtypes.h

Domain ODT_DOMAIN

Program Invocation ODT_PI

Event ODT_EVENT

Data Type ODT_SIMPLETYPE

Data Type Structure Description ODT_STRUCTTYPE

Simple Variable ODT_SIMPLEVAR

Array ODT_ARRAY

Record ODT_RECORD

Variable List ODT_VARLIST

Chapter 2 Core Fieldbus Functions — nifGetObjectType

© National Instruments Corporation 2-15 NI-FBUS Communications Manager FRM

int loop;

...

nifGetObjectType(aiBlock, "OUT", &typeInfo);

for (loop=0; loop < typeInfo.numElems; loop++)

{

doSomethingWithElement(typeInfo.allElems[loop]);

}

For variable list objects (type ODT_VARLIST), you must call nifGetObjectType for each
element in the list of elements with the typeIndex of the element returned in the list with
the first nifGetObjectType call. The typeIndex of the element returned in the list in this
case is the relative index of the element within the block, whose name is returned by
blockTag. These subsequent calls to nifGetObjectType should use the NIFB_INDEX
macro to specify the typeIndex returned by the first call.

For example, the following fragment of pseudocode gets the type information for a variable
list object and does something with the type information for each variable:

nifObjTypeList_t typeInfo, varTypeInfo;

nifDesc_t aiBlock;

int loop;

...

nifGetObjectType(aiBlock, "VIEW_1", &typeInfo);

if (typeinfo.objectCode == ODT_VARLIST)

{

for (loop=0; loop < typeInfo.numElems; loop++)

{

nifGetObjectType(aiBlock,

NIFB_INDEX(typeInfo.allElems[loop].objTypeIndex),

&varTypeInfo);

doSomethingWithVariable(varTypeInfo);

}

}

For all successful calls to nifGetObjectType, you must call nifFreeObjectType to
clean up memory allocated within these structures.

Chapter 2 Core Fieldbus Functions — nifGetObjectType

NI-FBUS Communications Manager FRM 2-16 ni.com

For objects with the object codes ODT_DOMAIN, ODT_PI, ODT_EVENT, and
ODT_SIMPLETYPE, only the object type is returned, and the list of elements allElems in the
structure nifObjTypeList_t is empty. The list of standard data types for an object which
has the object code ODT_SIMPLETYPE is also as specified in the FMS Specifications section
in the Fieldbus Foundation Specifications document and is listed in Table 2-3 for your
convenience.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you specified is not valid.

E_TIMEOUT The device containing the object is present but did
not respond within the timeout period.

E_MULTIPLE More than one identical tag was found; the function
failed.

Table 2-3. Object Codes for the nifObjTypeList_t Data Structure

Data Type
objTypeIndex in

fbtypes.h Number of Octets (Size)

Boolean FF_BOOLEAN 1

Integer8 FF_INTEGER8 1

Integer16 FF_INTEGER16 2

Integer32 FF_INTEGER32 4

Unsigned8 FF_UNSIGNED8 1

Unsigned16 FF_UNSIGNED16 2

Unsigned32 FF_UNSIGNED32 4

Floating Point FF_FLOAT 4

Visible String FF_VISIBLE_STRING 1, 2, 3, ...

Octet String FF_OCTET_STRING 1, 2, 3, ...

Date FF_DATE 7

Time of Day FF_TIMEOFDAY 4 or 6

Time Difference FF_TIME_DIFF 4 or 6

Bit String FF_BIT_STRING 1, 2, 3, ...

Time Value FF_TIME_VALUE 8

Chapter 2 Core Fieldbus Functions — nifGetObjectType

© National Instruments Corporation 2-17 NI-FBUS Communications Manager FRM

E_NOT_FOUND The NI-FBUS Communications Manager could not
find the specified object.

E_BAD_ARGUMENT The object specified by index was that of a simple
data type, which must already be known to you.

E_RESOURCES The NI-FBUS Communications Manager is unable
to allocate some system resource; this is usually a
memory problem.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager, under which the
descriptor was opened, has been lost or closed.

Chapter 2 Core Fieldbus Functions — nifReadObject

NI-FBUS Communications Manager FRM 2-18 ni.com

nifReadObject

Purpose
Read an object’s value from a device.

Format
nifError_t nifReadObject(nifDesc_t ud, char *name, void *buffer,

uint8 *length)

nifError_t nifReadObject(nifDesc_t ud, NIFB_INDEX(uint16 idx),

void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),

void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_ITEM(uint32 item), void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),

void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,

uint16 subidx), void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),

void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,

uint16 subidx),void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint16 subidx),

void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,

uint16 subidx), void *buffer, uint8 *length)

Chapter 2 Core Fieldbus Functions — nifReadObject

© National Instruments Corporation 2-19 NI-FBUS Communications Manager FRM

Input
ud The descriptor of the session, link, physical device, VFD or block

if reading by name. If reading by index, ud must be a VFD
or block.

name Name of the parameter your application reads, in
BLOCKTAG.PARAM format. To specify a structure element by
name, specify the name in BLOCKTAG.STRUCT.ELEMENT format.
Refer to Table 2-4 for an explanation of how to use macros to
specify the parameter.

length The size of the buffer to hold the result, in bytes.

Output
buffer The value that the NI-FBUS Communications Manager reads.

length The actual size of the resulting data, in bytes.

Context
Session, block, VFD, physical device, link.

Description
nifReadObject reads the values of objects such as block parameters or communications
parameters from devices.

• If ud is the descriptor of a link, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if multiple identical BLOCKTAG.PARAM_NAME
tags are located on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, then name must be
in the format BLOCKTAG.PARAM_NAME.

• If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

• If ud is the descriptor of a function block, and the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro is used, the index specified is the relative index of the
parameter within the block. Relative indices start at 1 for the first parameter.

• In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT format
to represent a named element of a named structure.

In each case, name can represent either a variable or a variable list object. You should
determine the size of the object beforehand, possibly with a call to nifGetObjectSize.
If the object is larger than the buffer size specified in length, the NI-FBUS Communications
Manager returns an error, and none of the data in the buffer is valid.

Chapter 2 Core Fieldbus Functions — nifReadObject

NI-FBUS Communications Manager FRM 2-20 ni.com

Refer to Table 2-4 for an explanation of how to use macros to specify the parameter.

The data nifReadObject returns is in Fieldbus Foundation FMS Application format. You
must accomplish conversion of the data to the internal format of your processor and compiler.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor does not correspond to a VFD
or function block; this descriptor is no longer valid.

E_NOT_FOUND The referred object does not exist.

E_OBJECT_ACCESS_DENIED The NI-FBUS Communications Manager interface
does not have the required privileges. The access
group you belong to is not allowed to acknowledge
the event, or the password you used is wrong.

E_MULTIPLE The NI-FBUS Communications Manager found
more than one identical tag; the function failed.

E_BUF_TOO_SMALL The object is larger than your buffer.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because it
is at a default address.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifReadObject completed.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_PARAMETER_CHECK The device reported a violation of parameter-specific
checks.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions — nifReadObjectList

© National Instruments Corporation 2-21 NI-FBUS Communications Manager FRM

nifReadObjectList

Purpose
Read the values of several objects from a device or several devices.

Format
nifError_t nifReadObjectList (nifDesc_t ud, char **blkParamList,

uint16 numObjects, void *buffer, uint16 *length,

nifError_t *errArray)

Input
ud The descriptor of the session, link, physical device, VFD,

or block.

blkParamList The list of parameter names your application reads in the form
of BLOCKTAG.PARAM. To specify any parameter by index use
the NIFB_INDEX macro. To specify any parameter that is an
array or structure element by index and subindex, use the
NIFB_INDEX_SUBINDEX macro. To specify a named structure
element, supply the parameter name in the form of
BLOCKTAG.STRUCT.ELEMENT.

numObjects The number of parameter names specified in blkParamList.
(The maximum number of objects that can be specified in
blkParamList is given by the constant MAX_LIST_ELEMS.)

length The size of the buffer to hold the result of all the parameter reads,
in bytes.

Output
buffer The values of all the parameters read, stored as a continuous string

of bytes.

length The cumulative size of the actual resulting data in bytes.

errArray The error codes resulting from each parameter read. The error
codes have a one-to-one correspondence with the order in which
the parameters are specified in blkParamList.

Context
Session, link, device, VFD, block.

Chapter 2 Core Fieldbus Functions — nifReadObjectList

NI-FBUS Communications Manager FRM 2-22 ni.com

Description
nifReadObjectList reads the values of objects specified in the list, which may include
block parameters or communication parameters from devices.

• If ud is the descriptor of a link, each name in blkParamList must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for any given name specified by
the blocktag.param format in blkParamList. The read of this particular object fails
if identical BLOCKTAG.PARAM_NAME tags are located on the bus. Index access is not
allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, any name in
blkParamList must be in the format blocktag.param_name.

• If ud is the descriptor of a function block, any name in blkParamList must be in the
format PARAM_NAME.

• If ud is the descriptor of a function block and the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro is used to specify a name in blkParamList, the index
specified is the relative index of the parameter within the block. Relative indices start at 1
for the first block parameter.

• In all descriptor cases, any PARAM_NAME specified in blkParamList can be expanded
to STRUCT.ELEMENT format to represent a named element of a named structure.

For each name specified in blkParamList, the name can either represent a variable or a
variable list object. You should determine the size of each object specified in blkParamList
beforehand, possibly with a call to nifGetObjectSize. If the cumulative size of all the
objects specified in the list is larger than the buffer size specified in length, the NI-FBUS
Communications Manager returns an error. The data in the buffer is valid for however many
objects were successfully read. The success or failure of the read for every object specified
in blkParamList is indicated in errArray, the array in which error codes are returned.
The error code in the first element of errArray is the error code indicating success or failure
upon read of the first object specified in blkParamList, and so on.

Refer to Table 2-4 for an explanation of how to use macros to specify the parameters in
blkParamList.

The data nifReadObjectList returns is in Fieldbus Foundation FMS Application format.
You must accomplish conversion of the data to the internal format of your processor and
compiler.

Chapter 2 Core Fieldbus Functions — nifReadObjectList

© National Instruments Corporation 2-23 NI-FBUS Communications Manager FRM

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor is no longer valid.

E_BUF_TOO_SMALL The size of the data resulting from the read of all
objects specified in the list is larger than your buffer.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions — nifWriteObject

NI-FBUS Communications Manager FRM 2-24 ni.com

nifWriteObject

Purpose
Write a parameter value to a device.

Format
nifError_t nifWriteObject(nifDesc_t ud, char *name, void *buffer,

uint8 length)

nifError_t nifWriteObject(nifDesc_t ud, NIFB_INDEX(uint16 idx),

void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),

void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_ITEM(uint32 item), void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),

void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_BLOCK_ITEM(char *blocktag, uint32 item),

void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,

uint16 subidx), void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),

void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,

uint16 subidx), void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_NAME_SUBINDEX(char *name, uint16 subidx),

void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,

NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,

uint16 subidx), void *buffer, uint8 length)

Chapter 2 Core Fieldbus Functions — nifWriteObject

© National Instruments Corporation 2-25 NI-FBUS Communications Manager FRM

Input
ud The descriptor of the session, link, physical device, VFD, or

block, if writing by name. If writing by index, ud must be a VFD
or block.

name Name of the parameter you want the NI-FBUS Communications
Manager to write, in BLOCKTAG.PARAM form. To specify a
structure element by name, specify the name in
BLOCKTAG.STRUCT.ELEMENT format. Refer to Table 2-4 for an
explanation of how to use macros to specify the parameter.

buffer The value you want the NI-FBUS Communications Manager
to write.

length The size of the data buffer, in bytes.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

Description
nifWriteObject writes the values of a function block parameter to a device.

• If ud is the descriptor of a session or link, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The function fails if more than one identical
BLOCKTAG.PARAM_NAME match is found.

• If ud is a physical device descriptor, a parameter is written by BLOCKTAG.PARAM_NAME.

• If ud is the descriptor of a general Virtual Field Device, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter.

• In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT format
to represent a named element of a named structure.

Refer to Table 2-4 for an explanation of how to use macros to specify the parameter.

Chapter 2 Core Fieldbus Functions — nifWriteObject

NI-FBUS Communications Manager FRM 2-26 ni.com

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The device descriptor does not correspond to a VFD.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_ORDINAL_NUM_OUT_OF_RANGE The parameter is out of the device’s range.

E_OBJECT_ACCESS_UNSUPPORTED The device does not support write access to this
object.

E_MULTIPLE The NI-FBUS Communications Manager found
more than one identical tag; the function failed.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because it
is at a default address.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_PARAMETER_CHECK The device reported a violation of parameter-specific
checks.

E_EXCEED_LIMIT The device reported that the value exceeds the limit.

E_WRONG_MODE_FOR_REQUEST The device reported that the current function block
mode does not allow you to write to the parameter.

E_WRITE_IS_PROHIBITED The device reported that the WRITE_LOCK parameter
value is set. The WRITE_LOCK parameter prohibits
writing to the name parameter.

E_DATA_NEVER_WRITABLE The specified object is read-only.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions — Using Interface Macros

© National Instruments Corporation 2-27 NI-FBUS Communications Manager FRM

Using Interface Macros
This section contains tips for using the NI-FBUS Communications Manager interface macros.
These macros are defined in the header file nifbus.h.

As shown in Table 2-4, you can specify the parameter your application reads in the name
parameter in the following ways:

• To specify an object by index, use the NIFB_INDEX macro in the nifbus.h header file.

• To specify an array or structure element by index and subindex, use the
NIFB_INDEX_SUBINDEX macro.

• If you already have a block descriptor, you can specify an object by its item ID with
the NIFB_ITEM macro, or you can specify a subelement by its item ID with the
NIFB_ITEM_SUBINDEX macro.

Table 2-4. Core Function Macros

Descriptor Type
You Have

Parameter Information
You Have Macro to Use

Block Descriptor Name Normal Access by Name

Name and Subindex NIFB_NAME_SUBINDEX

Relative Index within
the Block

NIFB_INDEX

Relative Index and Subindex NIFB_INDEX_SUBINDEX

Device Description Item ID NIFB_ITEM

Device Description Item ID
and Subindex

NIFB_ITEM_SUBINDEX

Non-Block Descriptor Name Normal Access Using
BLOCKTAG.PARAM Format

Name and Subindex NIFB_BLOCK_NAME_SUBINDEX

Relative Index within
the Block

NIFB_BLOCK_INDEX

Relative Index and Subindex NIFB_BLOCK_INDEX_SUBINDEX

Device Description Item ID NIFB_BLOCK_ITEM

Device Description Item ID
and Subindex

NIFB_BLOCK_ITEM_SUBINDEX

Chapter 2 Core Fieldbus Functions — Using Interface Macros

NI-FBUS Communications Manager FRM 2-28 ni.com

• If you do not have a block descriptor, you have the following choices:

– You can use the NIFB_BLOCK_ITEM macro to specify an item.

– You can use the NIFB_BLOCK_ITEM_SUBINDEX macro to specify a subelement.

– You can use the NIFB_BLOCK_INDEX macro specify an object by index.

– You can use the NIFB_BLOCK_INDEX_SUBINDEX macro to specify a subindex.

You can find all these macros in the nifbus.h header file.

© National Instruments Corporation 3-1 NI-FBUS Communications Manager FRM

3
Alert and Trend Functions

The following tables list the alert and trend functions.

Table 3-1. Alert Functions

Function Purpose

nifAcknowledgeAlarm Acknowledge an alarm received

nifWaitAlert Wait for an alert (an event or an alarm) from a
specific device or from any device

Table 3-2. Trend Function

Function Purpose

nifWaitTrend Wait for a trend from a specific device or from
any device

Chapter 3 Alert and Trend Functions — nifAcknowledgeAlarm

NI-FBUS Communications Manager FRM 3-2 ni.com

nifAcknowledgeAlarm

Purpose
Acknowledge an alarm received.

Format
nifError_t nifAcknowledgeAlarm(nifDesc_t ud, char *alarmName)

Input
ud A session, link, physical device, VFD, or block descriptor for

the alarm.

alarmName The name of the alarm object that you want the NI-FBUS
Communications Manager to acknowledge. If ud is a block
descriptor, alarmName should be the parameter name, otherwise
alarmName should be in BLOCKTAG.PARAMNAME format.

Context
Block, VFD, physical device, link, session.

Description
nifAcknowledgeAlarm acknowledges an alarm notification from a device. The NI-FBUS
Communications Manager clears the unacknowledged field associated with the alarm
object alarmName.

If ud is a block descriptor, the alarmName is the same as the alarmOrEventName field of
the alert data you get in the nifWaitAlert call. If ud is a session, link, VFD, or physical
device descriptor, then alarmName is in BLOCKTAG.PARAMNAME format, where blockTag is
the same as the blockTag field of the alert data in the nifWaitAlert function.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The device descriptor is not a valid descriptor.

E_OBJECT_ACCESS_DENIED The NI-FBUS Communications Manager interface
does not have the required privileges. The access
group you belong to is not allowed to acknowledge
the event, or the password you used is wrong.

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager tried to communicate
with the device.

E_ALARM_ACKNOWLEDGED The alarm has already been acknowledged.

Chapter 3 Alert and Trend Functions — nifAcknowledgeAlarm

© National Instruments Corporation 3-3 NI-FBUS Communications Manager FRM

E_MULTIPLE There are identical block tags.

E_NOT_FOUND There is no such block in the device or VFD with the
specified tag.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 3 Alert and Trend Functions — nifWaitAlert

NI-FBUS Communications Manager FRM 3-4 ni.com

nifWaitAlert

Purpose
Wait for an alert (an event or an alarm) from a specific device or from any device.

Format
nifError_t nifWaitAlert(nifDesc_t ud, nifAlertData_t *aldata,

uint8 alertPriority)

Input
ud The descriptor of the session, link, physical device, VFD, block,

or link the alert comes from.

alertPriority Lowest priority of the alert coming in that you want to wait on.

Output
aldata The information about the specific alert.

Context
Block, VFD, physical device, link, session.

Description
ud represents a descriptor of a session, link, a physical device, a VFD, or a block. If ud
is a VFD descriptor, then the NI-FBUS Communications Manager waits for an alert from
any block in the Virtual Field Device. If ud is a block, the NI-FBUS Communications
Manager waits for an alarm or event from the block ud refers to. If ud represents a link,
nifWaitAlert completes when an event is received from any device connected to that link.
If the descriptor is a session descriptor, the function waits on any event from any attached link.

nifWaitAlert waits indefinitely until the NI-FBUS Communications Manager receives an
alert with a priority greater than or equal to the input alert priority. Your application can have
a dedicated thread which does nifWaitAlert only.

When the NI-FBUS Communications Manager interface receives an alert, the aldata
parameter is filled in with the information about the alert. The form of aldata->alertData
depends on the value of aldata->alertType. alData->alarmOrEventName is the name
of the alarm parameter or event parameter that caused the alert. alData->deviceTag and
alData->blockTag are the tags of the device and the block of the alarm, respectively.

nifWaitAlert sends a confirmation to the device, informing the alerting device that the alert
was received. Note that this is a separate step from alert acknowledgment, which must be
carried out for alarms using nifAcknowledgeAlarm.

Chapter 3 Alert and Trend Functions — nifWaitAlert

© National Instruments Corporation 3-5 NI-FBUS Communications Manager FRM

If you have multiple threads waiting to receive the same alert, the NI-FBUS Communications
Manager sends a copy of the alert to all the waiting threads. Your application must ensure that
only one thread acknowledges any one alarm with a call to nifAcknowledgeAlarm. You can
abort a pending nifWaitAlert call by closing the descriptor on which the call was made.

The alertType parameter can be ALERT_ANALOG, ALERT_DISCRETE, or ALERT_UPDATE.

nifAlertData_t is defined as follows:

typedef struct nifAlertData_t{

uint8 alertType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char alarmOrEventName [TAG_SIZE + 1];

uint8 alertKey;

uint8 standardType;

uint8 mfrType;

uint8 messageType;

uint8 priority;

nifTime_t timeStamp;

uint16 subCode;

uint16 unitIndex;

union {

float floatAlarmData;

uint8 discreteAlarmData;

uint16 staticRevision;

} alertData;

} nifAlertData_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you gave is invalid.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was closed
before nifWaitAlert completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 3 Alert and Trend Functions — nifWaitTrend

NI-FBUS Communications Manager FRM 3-6 ni.com

nifWaitTrend

Purpose
Wait for a trend from a specific device or from any device.

Format
nifError_t nifWaitTrend(nifDesc_t ud, nifTrendData_t *trend)

Input
ud The descriptor of the session, physical device, VFD, block,

or link that the trend comes from.

Output
trend The information about the specific trend.

Context
Block, VFD, physical device, link, session.

Description
ud represents a descriptor of a session, link, physical device, VFD, or block. If ud is a VFD
descriptor, then the NI-FBUS Communications Manager waits for a trend from any block in
the Virtual Field Device. If ud is a block, the NI-FBUS Communications Manager waits for
a trend from the block ud identifies. If ud represents a link, the call completes when a trend
is received from any device connected to that link. If the descriptor is a session descriptor,
nifWaitTrend waits on any trend from any attached link.

nifWaitTrend waits indefinitely until the NI-FBUS Communications Manager interface
receives a trend. Your application can have a dedicated thread which does nifWaitTrend
only.

When a trend comes in, the trend parameter is filled in with the information about the trend.
The form of trend->trendData depends on the value of trend->trendType. There are
three trend types: TREND_FLOAT, TREND_DISCRETE and TREND_BITSTRING. If the trend
type is TREND_FLOAT, the trend->trendData is a 16-element array of floating point
numbers. If the trend type is TREND_DISCRETE, the trend->trendData is a 16-element
array of 1-byte integers. If the trend type is TREND_BITSTRING, the trend->trendData is
a 16-element array of 2-byte bit strings, which is equivalent to a 32-element array of 1-byte
integers. deviceTag and blockTag are the device and block tags of the parameter that has
the trend; paramName is the name of the parameter.

Chapter 3 Alert and Trend Functions — nifWaitTrend

© National Instruments Corporation 3-7 NI-FBUS Communications Manager FRM

If you have multiple threads waiting to receive the same trend, the NI-FBUS Communications
Manager sends a copy of the trend to all the waiting threads. You can abort a pending
nifWaitTrend call by closing the descriptor on which the call was made.

The trend type can be TREND_FLOAT, TREND_DISCRETE, or TREND_BITSTRING.
The sample type can be SAMPLE_INSTANT or SAMPLE_AVERAGE.

nifTrendData_t is defined as follows:

typedef struct nifTrendData_t {

uint8 trendType;

char deviceTag[TAG_SIZE + 1];

char blockTag[TAG_SIZE + 1];

char paramName[TAG_SIZE + 1];

uint8 sampleType;

uint32 sampleInterval;

nifTime_t lastUpdate;

uint8 status[16];

union {

float f[16];

uint8 d[16];

uint8 bs[32];

} trendData;

} nifTrendData_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you gave is not valid.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

© National Instruments Corporation A-1 NI-FBUS Communications Manager FRM

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni.com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, hardware
schematics and conformity documentation, example code,
tutorials and application notes, instrument drivers, discussion
forums, a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/ask. Our online system helps you define your question
and connects you to the experts by phone, discussion forum,
or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and
interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 NI-FBUS Communications Manager FRM

Glossary

A
Address Character code that identifies a specific location (or series of

locations) in memory.

Administrative function An NI-FBUS function that deals with administrative tasks, such as
returning descriptors and closing descriptors.

Alarm A notification the NI-FBUS Communications Manager software
sends when it detects that a block leaves or returns to a particular
state.

Alert An alarm or event.

Alert function A function that receives or acknowledges an alert.

Application Function blocks.

Argument A value you pass in a function call. Sometimes referred to as a
parameter, but this documentation uses a different meaning for
parameter, which is included in this glossary.

Array Ordered, indexed list of data elements of the same type.

Attribute Properties of parameters.

B
Bit string A data type in the object description.

Block A logical software unit that makes up one named copy of a block and
the associated parameters its block type specifies. The values of the
parameters persist from one invocation of the block to the next. It can
be a resource block, transducer block, or function block residing
within a virtual field device.

Block tag A character string name that uniquely identifies a block on a Fieldbus
network.

Boolean Logical relational system having two values, each the opposite of the
other, such as true and false or zero and one.

Glossary

NI-FBUS Communications Manager FRM G-2 ni.com

Bridge An interface in a Fieldbus network between two different protocols.

Buffer Temporary storage for acquired or generated data.

Bus The group of conductors that interconnect individual circuitry in a
computer. Typically, a bus is the expansion vehicle to which I/O or
other devices are connected. Examples of PC busses are the ISA and
PCI buses.

C
Character string name See Tag.

Core function A basic function that the NI-FBUS Communications Manager
software performs, such as reading and writing block parameters.

D
DD See Device Description.

DDOD Device Description Object Dictionary. The Device Description
binary file.

DDS See Device Description Service.

Descriptor A number returned to the application by the NI-FBUS
Communications Manager, used to specify a target for future
NI-FBUS calls.

Device A sensor, actuator, or control equipment attached to the Fieldbus.

Device Description A machine-readable description of all the blocks and block
parameters of a device.

Device Description Service A set of functions that applications use to access Device Descriptions.

Device ID An identifier for a device that the manufacturer assigns. No two
devices can have the same device ID.

Device tag A name you assign to a Fieldbus device.

DLL See Dynamic Link Library.

DMA Direct Memory Access.

Dynamic Link Library A library of functions and subroutines that links to an application at
run time.

Glossary

© National Instruments Corporation G-3 NI-FBUS Communications Manager FRM

E
Event An occurrence on a device that causes a Fieldbus entity to send the

Fieldbus event message.

F
Field device A Fieldbus device connected directly to a Fieldbus.

Fieldbus An all-digital, two-way communication system that connects control
systems to instrumentation. A process control local area network
defined by ISA standard S50.02.

Fieldbus Foundation An organization that developed a Fieldbus network specifically based
upon the work and principles of the ISA/IEC standards committees.

Fieldbus Messaging
Specification

The layer of the communication stack that defines a model for
applications to interact over the Fieldbus. The services FMS provides
allow you to read and write information about the OD, read and write
the data variables described in the OD, and perform other activities
such as uploading/downloading data and invoking programs inside a
device.

FMS See Fieldbus Messaging Specification.

Foundation Fieldbus
specification

The communications network specification that the Fieldbus
Foundation created.

Function block A named block consisting of one or more input, output, and contained
parameters. The block performs some control function as its
algorithm. Function blocks are the core components you control a
system with. The Fieldbus Foundation defines standard sets of
function blocks. There are ten function blocks for the most basic
control and I/O functions. Manufacturers can define their own
function blocks.

Function block application The block diagram that represents your control strategy.

H
Header file A C-language source file containing important definitions and

function prototypes.

Glossary

NI-FBUS Communications Manager FRM G-4 ni.com

I
Index An integer that the Fieldbus specification assigns to a Fieldbus object

or a device that you can use to refer to the object. A value in the object
dictionary used to refer to a single object.

L
LAS Link Active Scheduler.

Link A Foundation Fieldbus network is made up of devices connected by
a serial bus. This serial bus is called a link (also known as a segment).

Link ID See Link identifier.

Link identifier A number that specifies a link.

Live list The list of all devices that are properly responding to the Pass Token.

M
Mode Type of communication.

N
NI-FBUS Communications
Manager

Software shipped with National Instruments Fieldbus interfaces that
lets you read and write values. It does not include configuration
capabilities.

O
Object An element of an object dictionary.

Object attribute A part of the machine-readable description of a Fieldbus object.

Object description Describes data that is communicated over the Fieldbus.

Object Dictionary A structure in a device that describes data that can be communicated
on the Fieldbus. The object dictionary is a lookup table that gives
information such as data type and units about a value that can be read
from or written to a device.

Object value The actual data value associated with a Fieldbus object.

Glossary

© National Instruments Corporation G-5 NI-FBUS Communications Manager FRM

Octet A single 8-bit value.

OD See Object Dictionary.

P
Parameter One of a set of network-visible values that makes up a function block.

Physical device A single device residing at a unique address on the Fieldbus.

Physical device tag A user-defined name for a physical device.

Program A set of instructions the computer can follow, usually in a binary file
format, such as a .exe file.

R
Resource block A special block containing parameters that describe the operation

of the device and general characteristics of a device, such as
manufacturer and device name. Only one resource block per device
is allowed.

S
Segment See Link.

Server Device that receives a message request.

Service Services allow user applications to send messages to each other
across the Fieldbus using a standard set of message formats.

Session A communication path between an application and the NI-FBUS
Communications Manager.

Symbol file A Fieldbus Foundation or device manufacturer-supplied file that
contains the ASCII names for all the objects in a device.

Glossary

NI-FBUS Communications Manager FRM G-6 ni.com

T
Tag A name you can define for a block, virtual field device, or device.

Thread An operating system object that consists of a flow of control within
a process. In some operating systems, a single process can have
multiple threads, each of which can access the same data space within
the process. However, each thread has its own stack and all threads
can execute concurrently with one another (either on multiple
processors, or by time-sharing a single processor).

Timeout A period of time after which an error condition is raised if some event
has not occurred.

Transducer block A block that is an interface to the physical, sensing hardware in
the device. It also performs the digitizing, filtering, and scaling
conversions needed to present input data to function blocks and
converts output data from function blocks. Transducer blocks
decouple the function blocks from the hardware details of a given
device, allowing generic indication of function block input and
output. Manufacturers can define their own transducer blocks.

Trend A Fieldbus object that allows a device to sample a process variable
periodically, then transmit a history of the values on the network.

Trend function An NI-FBUS call related to trends.

V
Variable list A list of variables you can access with a single Fieldbus transaction.

VFD See Virtual Field Device.

Virtual Field Device The virtual field device is a model for remotely viewing data
described in the object dictionary. The services provided by the
Fieldbus Messaging Specification allow you to read and write
information about the object dictionary, read and write the data
variables described in the object dictionary, and perform other
activities such as uploading/downloading data and invoking
programs inside a device. A model for remotely viewing data
described in the object dictionary.

© National Instruments Corporation I-1 NI-FBUS Communications Manager FRM

Index

A
administrative functions

list of functions (table), 1-1
nifClose, 1-2
nifDownloadDomain, 1-3
nifGetBlockList, 1-4
nifGetDeviceList, 1-6
nifGetInterfaceList, 1-8
nifGetVFDList, 1-10
nifOpenBlock, 1-12
nifOpenLink, 1-14
nifOpenPhysicalDevice, 1-16
nifOpenSession, 1-18
nifOpenVfd, 1-19

alert and trend functions
list of functions (table), 3-1
nifAcknowledgeAlarm, 3-2
nifWaitAlert, 3-4
nifWaitTrend, 3-6

C
contacting National Instruments, A-1
conventions used in the manual, vi
core functions

list of functions (table), 2-1
nifFreeObjectAttributes, 2-2
nifFreeObjectType, 2-3
nifGetObjectAttributes, 2-4
nifGetObjectName, 2-7
nifGetObjectSize, 2-10
nifGetObjectType, 2-12
nifReadObject, 2-18
nifReadObjectList, 2-21
nifWriteObject, 2-24
using NI-FBUS interface macros, 2-27

customer
education, A-1
professional services, A-1
technical support, A-1

D
diagnostic resources, A-1
documentation

online library, A-1
drivers

instrument, A-1
software, A-1

E
example code, A-1

F
frequently asked questions, A-1

H
help

professional services, A-1
technical support, A-1

I
instrument drivers, A-1
interface macros, NI-FBUS, 2-27

K
KnowledgeBase, A-1

Index

NI-FBUS Communications Manager FRM I-2 ni.com

N
National Instruments

customer education, A-1
professional services, A-1
system integration services, A-1
technical support, A-1
worldwide offices, A-1

nifAcknowledgeAlarm function, 3-2
nifClose function, 1-2
nifDownloadDomain function, 1-3
nifFreeObjectAttributes function, 2-2
nifFreeObjectType function, 2-3
nifGetBlockList function, 1-4
nifGetDeviceList function, 1-6
nifGetInterfaceList function, 1-8
nifGetObjectAttributes function, 2-4
nifGetObjectName function, 2-7
nifGetObjectSize function, 2-10
nifGetObjectType function, 2-12

context, 2-13
data structure, 2-14
data type, 2-14
description, 2-13
format, 2-12
input, 2-13
object code elements, 2-14
object codes for thenifObjTypeList_t

data structure (table), 2-14, 2-16
output, 2-13
pseudocode for getting type

information, 2-15
purpose, 2-12
return values, 2-16
standard data types forODT_SIMPLETYPE

object code (table), 2-16
typeIndex of elements, 2-15

nifGetVFDList function, 1-10
nifOpenBlock function, 1-12
nifOpenLink function, 1-14
nifOpenPhysicalDevice function, 1-16

nifOpenSession function, 1-18
nifOpenVfd function, 1-19
nifReadObject function, 2-18
nifReadObjectList function, 2-21
nifWaitAlert function, 3-4
nifWaitTrend function, 3-6
nifWriteObject function, 2-24

O
online technical support, A-1

P
phone technical support, A-1
professional services, A-1
programming examples, A-1

R
related documentation, 1-1

S
software drivers, A-1
support

technical, A-1
system integration services, A-1

T
technical support, A-1
telephone technical support, A-1
training

customer, A-1
troubleshooting resources, A-1

Index

© National Instruments Corporation I-3 NI-FBUS Communications Manager FRM

W
Web

professional services, A-1
technical support, A-1

worldwide technical support, A-1

	NI-FBUS Communications Manager Function Reference Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Compliance
	Conventions
	Contents
	Chapter 1 Administrative Functions
	Related Documentation
	List of Administrative Functions
	nifClose
	nifDownloadDomain
	nifGetBlockList
	nifGetDeviceList
	nifGetInterfaceList
	nifGetVFDList
	nifOpenBlock
	nifOpenLink
	nifOpenPhysicalDevice
	nifOpenSession
	nifOpenVfd

	Chapter 2 Core Fieldbus Functions
	List of Core Functions
	nifFreeObjectAttributes
	nifFreeObjectType
	nifGetObjectAttributes
	nifGetObjectName
	nifGetObjectSize
	nifGetObjectType
	nifReadObject
	nifReadObjectList
	nifWriteObject

	Chapter 3 Alert and Trend Functions
	nifAcknowledgeAlarm
	nifWaitAlert
	nifWaitTrend

	Appendix A Technical Support and Professional Services
	Using Interface Macros

	Glossary
	A-B
	C-D
	E-H
	I-O
	P-S
	T-V

	Index
	A-K
	N-T
	W

	Tables
	Table 1-1. List of Administrative Functions
	Table 2-1. List of Core Functions
	Table 2-2. Object Codes for the nifObjTypeList_t Data Structure
	Table 2-3. Object Codes for the nifObjTypeList_t Data Structure
	Table 2-4. Core Function Macros
	Table 3-1. Alert Functions
	Table 3-2. Trend Function

